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ABSTRACT

Assume that N mutually independent observations have been

taken from the population specified by

PIf M p, i= IZ,...,N, j =l,2,...

* where X denotes the ith observation and M denotes the Jth

class. The classes are not assumed to have a natural ordering.

Then the entropy is defined by

H = -. p, log p1

The natural estimator H = -, • log ^p is shown to have certain
J

deficiencies when the number of classes is large relative to the

sample size or is infinite. A procedure based on quadrature

methods is proposed as a means of circumventing these deficiencies.
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THE STATISTICAL ESTIMATION OF ENTROPY
IN THE NON-PARAMETRIC CASE

Bernard Harris

I. Introduction and Sumpai•y. Assume that a random sample of size N has

been drawn from a 'rrultinomial population" with an unknown and possibly

countably infinite number of classes. That is, if X is the ith observation

and M is the jth class, then

(I) P{Xi C M } = >j 01 j, : , , ., i I, , . N ,

1 0

and pj = I . The classes are not assumed to have a natural ordering.

In such statistical populations, the entropy, defined by

(2) H= H(plp 2,...) = -Y P log p

is a natural parameter of interest. For technical reasons, natural logarithms

will be employed throughout, rather than the more customary base 2 logarithms.

This modification is equivalent to a change of scale and will have no essential

effect on the subsequent discussion. We also assume throughout H < r.

Some examples for which H =: are given in Appendix 4.

Some concrete examples for which the entropy is a natural parameter

are the frequencies of words in a language and the frequencies of species of

plants or insects in a region. For such populations, the entropy may be re-

garded as a natural measure of heterogeneity. Many other measures of

Sponsored by the United States Army under Contract No. DAAG29-75 .C-0024.
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heterogeneity depend on the classes being nume ically indexed, which is a

stronger assumption than having a natural ordering.

We define the random variables Y I = 1,2...,N; J =1,,... by

I S1 if XI hi,

0 otherwise.

Then

and

N

4 Iis the number of observations in the Jth class.

The "natural" estimator of H, denoted by 1f, where

(4) H ~ pi log p

and

(5) j /IN, j= J, Z,...

has been studied extensively for thE case where the number of classes for which

p > 0 is known and finite. We denote the number of such classes by s in

this case and assume that these classes are indexed by 1, Z..., s. Then,

G, A. Miller and W. G. Madow [9] showed that the limiting (N -)
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distribution of 'J"T (H^ - H) is normally distributed with mean zero and

variance 2 -- pj (log pj + H)2, provided that not all pj I/s . They
J=l

also showed that if pj = l/s, j = l,Z,.. ., s, then ZN(H - tf) has a limiting

chi -square distribution with s - 1 degrees of freedom. The Miller- Madow

paper Is summarized in R. D. Luce [7]. An asymptotic evaluation of E(H - H)

is given in G. A. Miller [8]. The above results also appear as special cases

of the more general problem of obtaining the limiting distribution of the amount

of transistitted information, studied by Z. A. Lomnicki and S. K. Zaremba [6].

Subsequently G. P. Basarin [(] also ob:.ined the asymptotic mean and variance

of H and determined the limiting normal distribution as above, however, he

failed to note that if p1 = l/s, J = l,2,,...,s, then 4N(H-H) does not

have a proper limiting distribution. Ncta that in this case,

s

E pI(logpj + H) o
J=1

The paper by G. P. Basarin was subsequently generalized by A. M. Zubkov

[10], who permitted plP', ' Ps and s to depend on N in such a way

that for some e > 6>0, if

l-e p log 2 p. - H .0.0

as N -- oo and max (Np ) 01 -O(s/NI 6 ), then 4N(a - Ell)/(I. pj logZ p, - HZ)2

l<j<s

had a limiting standard normal distribution. He also showed that if s is

fixed, then 2N(H - H) has a limiting chi-square distribution when

#1605 -3-



max p 5-s'I = o(N"7) . In p3rticular, note that in Zubkov's theorem, he
2-,• l< j< s

considered H - E.H rather than H - H and required the additional condition

that s/J NT:p, log" ~ p 0 as N-e in order to r; place EHI~ by H

in the statement of his theorem. This last condition will be violated in many

of the applications for which the present technique is intended. In Section 2
A

we will study the behavior of H; here we observe that for the problem at

hand, H has certain deficiencies. Roughly speaking, if too much of the

probability is distributed over classes with "Ismall p. s", H will not be aI

satisfactory estimator. A meth.,d for circumventing some of these difficulties

is given in Section 3. The alternatives p-esented here are arrived at through

intuitive considerations and a detailed picture of their statistical behavior

is not available at present. Some preliminary empirical investigations are

presented to suggest the utility of the proposed techniques.

A

2. Properties of H , Here we present a somewhat refined version of some

of the Basarin, Miller-Madow results. The refinement is needed to connect

one known error in Basarin's paper and to also revise his computation of the

asymptotic variance of H, which is inadequate when p I = p - I/s

and p:=O. j>s.

Basarin considered a multinomial population with a kn-)wn finite

number of classes, that is, we have p3 10, j 1, Z,...,s and pj 0,

j > s . For the present, we adopt this assumption., Then, expanding in a

)taylor 5eries, we can write

-4605



s r rn-i s 10 -m
IF~A o (-I) IS i +

(6) H- - (P-P 09) + EL m(M1 /, rn-1i r+l

where

(7) R (41 s p F

r+l r(r+l) i r

and

(8) j p + (1-k i) p 0 < x <1.

From (6), for fixed J, 1 <j< s, we have

r ri-I (A A )m

(9) -P i log p1 + log p1 - m (m 1) rn-i rl

and

S

R r . R r 1 1

Then for any e, 0 < e < I and I~ ̂- p. < (1-E)p., we can write

andn

#1605 -5-



o0

r+ljl - m- Pl /J

M p r+ i i il-
<-

pj PJ I

I-pjlP1 r+l

-- r
e P4

1A

Now let A I p-p I_> (l-E)pj, 0<p < 1) Then from (7) and

(8)

A ) r+l

r+l, j r+l, J rlr+l) r

A

and since 0 <p <1,t 0< < I and R =0 if and only if pj -p Thus
j r+l,I I

on A (pA, p), R 0. Consequently,

A rI r~,

{[r(r+l) R ~:~r+l ] r j} (~-s

AANow A e(P 4 , p) is a compact set and x jx 1(p1 is a continuous function of

p on that set. Thus min X•(pj) is attained and is positive. Hence
pE A( p)

min min (P = > 0 . Further note that X is independent of N.
^ .s A EA ý j s s

Hence define I

(10) = rrin(•,s E )

-6- #1605



To understand the behavior of H and to motivate the subsequent decision,

we proceed to obtain asymptctic estimates of the mean and variance of H

by employing (6). To facilitate the evaluation of these expected values, a

tabulation of some required auxiliary formulas and some comments concerning

them are contained in Appendix 1 to this paper. In fact, we provide some-

what more formulas than are actually needed, since both the Basarin paper

[1] and the book by F. N. David and D. E. Barton [3, page iri6] contain some

misprints or errors, also these formulas have frequent applications in problems

dealing with multinomial distributions and hopefully will prove to be useful

in further studies in the direction on th.o present paper.

From (6) and (A. 1. 1-A. 1. 6), we have

(11) EH= H + E (-1)m ' El - p+)m, + E
+ F, r(m-) 1 r r+m
m=2 J=i pN

Then letting 11m(J) =E{IZj Npj} and noting that Elj- pl} I l(mJl/Nm

we have

r _lm-1 s 1m(J
(12) E• H + •= + E rl

M=2 re1-l Nmpj-

From (7), (8), (9) and (10), we have

s I{j - r+l

r+l r- r

1 • p r+l

- r(r+l) J= *rp

#1605 -7-



Consequently,

is EI'ý pr+lIE RrI < EIRrl < J J~ ,'

r+1 r+l -r(r+l) r r

and if r is an odd integer >1,

s r
IER p j7 l.rll)/\ p

r+I- r(r+li)N i=1 P

Thus, from (A. 1. 16), for r an odd integer > 1, we have

(13) IER I = O{N (r" )/Z)
r+l

Specifically, using (A. 1. 1)-(A. 1. 5) and (13), for r = 5, we get,

. s(P 1 -P) 12 s (p3p +2J
E = H INpj +

2NJ 6N2 J=l p2

2 3 4
4NI jS pi

Thus

-, s-i 1 i -3

(14) EH= H -- + -1 -l +) +O(N)
N ZN 2 = pi

of~ AEH2

Next ve evaluate th- mean squared error of IH, that is, E {{i- H) }

From (6), we have
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S S

1=1 
k=1

s A r l-I S (A Pk)
-2z (pj-p,) logP• E(_I) E m-k

= M=Z k=l P

r r m+I -2 s s A InlAPI

+ ' (-1) pis' s) Jik Pk)
+• • m(m -1)2(I-l) 1 -' T m-I m-IM= I=2 J=1 k=l pi pI

s r ( 1 1 -1 s (1-)m
-2R (p -p logp + 2 R m(m

r+1 -J Rr+l -1) 1 -i= M = 2 MJ= l pji

+ R 2
r+1

We compute the expected value of (15), employing (A. 1. 1-A. 1. 13) and (A. 1. 20),

I Iobtaining, for r = 3,

S S

(16)( log log
J=l k=l J-pj) k'Pk) lP k

2 '4 '2slog p109 l, ) + log p log P (jk) s log P L 0

W=1 NNN j=l N2

2 2
00 log p-9H

1=1

#1605 9



:• i ~3 3 (lm+I -2 S s(J J P(17) E (m- 1)m 1 ( - j1 1

m=2 1=2 k) ) K=l p-i Pk

_4 f 2 (j,k) + 40) ,20_D_,__.

4N (,k PjPk + Pj 1 + N

12 (3-2s+ s) + 3(s-2-4 - p -+-0 1 - 2 + s + o(N"3)

1N 2 -3
1l (s 2 1) + 0O(N -3)

and

3 (1)T s s log p1 (p- -pk)

(18) - 2 £E mir-1) m-1
m=2 j= -l Pk

logp Pi 2 1 (k, J) log p1 ý' 3(0) log p1 i ±'i(0I J

N J, k Pkp i p

1f log p j L 31 (k, J) log p 1p440) log Pp± 101
3N ~'k Pk J ii p

Plog p + sH)-+- (sH+ Y log ( 3 )

N j i 
N 

op 
+ 

O(N

O(N-3)

We now consider the tnree terms in (15) which contain R4 as a factor. To

consider the first of these terms, we write
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^ 4S SV (1) (pk-Pk)

(1) R (p1-) loci pJ Z ( (-) log p1  -)
p12 plc j

S+s (_1)4 (Pk4 pk) + R6
20To 4 6) 6)

k=1 Pk I

The expected value can easily be estim.t'-i using (A. 1. 5), (A. 1. 6), (11), (A. 1.7),

(A. 1. 2), the Caucby-Schwarz inequality, (A. 1. 16) and (A. 1. ZG). We

obtain

(20) ER 4 (R- p) logp 1 = O(N-3

J=1

The extensive computation indicated in (19) appeared to be essential, since a

direct application of the Cauchy-Schwarz inequality yields an estimate of
SO(N-5/21

Similarly, from (11), (A. i. 20), and (A. 1. 16), it follows readily that

3 ( s (p p1)m3

(21) R4 ý i rem l m-1 + R4 O(N

PI

Combining (16)-(21), we obtain

(22) E(l-H)? s pjlogZp -Hz +1(sZ-1) +O(N 3)
4N

From (14) and (22), we obtain

(23) 2 A 2- + 2 Z\ s- -3)

E(H-IH) - (EH -H)? = p log p 1 -Hj +-- +O(NZN

#1605 -11-



The preceding discussion enables us to observe a variety of short-

comings, when one employs H' as an estimator in the more general situation

described in section one.

First, from (14), we see that the bias of H depends on s, the number

of classes. If s is known, the bias can be largely removed by replacing H

by IH + however, we have assumed that s is unknown. Secondly, it•- 2N'

should be noted that the bias increases with s . Thus if we permit s to

grow, or if s is unknown, the bias may be large. In particular, we are

interested in the case where s may be of the same magnitude as N . In

this case, we would have to regard s s s(N) and pi = Pi(N) . However,

from (22) or (14), it is apparent that H - H will not generally tent to zero in

probability. Intuitively, it too much of the total probability is concentrated

on cells that are too small, then H will not be a satisfactory estimator.

In the examination of the properties of H, we found it desirable to

-z
extend Basarin's computations to terms of O(N-) . This is desirable

whenever p. = l/s, i= 1, 2, .. , s . In that case,
t1

S 2
.,p= - H

I 2 2: s-lo s=log s=O

and a useful asymptotic estimate of a- H or E(H - H) is not obtained.

-12- #1605



In summary, if s is known, or known to be bounded (independent of N)

or if the total probability of "small classes" is known to be small, then l1

will have satisfactory properties. In Appendix 2, the maximum of

G(pI, p2, - . I PS) is obtained. This can be utilized in determining the sample

size necessary to obtain a specified mean squared error when s is known
A

and H is used as the estimator of H.

3. Quadrature m.ethods of estimating H. Let

(4 - Npj(24) R(Pl•" P2,' )=• Np i e

We define the distributlon function

-Np/R(,

(25) F(x)= Y Np e /R(p 1,P2 "...)
Np< x

Then, it follows that

R(Pl P2'"" N e N( Npj N -Np 1

(Z6) N -f0 ex log(-N)dF(x)= L e log(N-) Np e
N xJ=l

Go

E -_ p1 logp 1 = HJ=j

#1605 -13-



Thus, it is clear that if we knew pI, P2 , ".., we would therefore know

F(x) and consequently know H. The procedure is to use the data to obtain

an estimate of F(x) and thus to obtain an estimate of H, which we denote

byH

Specifically, we propose to write (26) in the form

N
(27) H = f g(x) dF(x)

0

and to estimate H by

d
(28) H = 1 1 g(xi)wt P
Jii

the points and the weights w are to be determined from the data. We

now proceed to the construction of quadrature formulas of the form of (28).

Let r. be the number of cells occuring r times in the sample.
r

Triviaily, we have

N
(29) mr nr

From Appendix 3, we have that

(n (Np)r -NpI13•0) En ~ •le r=,Z, k

r 7= "r !

where k does not depend on N. The reader should refer to the appendix

for details concerning the sense in which the symbol . is used here. The

moments of F(x), denoted by I r are given by

-14- #1605



(3 1)f N r d)r ~ ( p g -N p 1
= x e J/R(pp

(r+l)! E(n )/E(n)

The observed ialues of nr may be regarded as estimates of E(n)

whenever n1 #0. In this case, we can regard

(32) m = (r+l) !n nr+l/n r= 2,. k

as estimates of the first k moments.

We proceed as follows. !f nl= 0, estimate H by (4). If n1  0

select k and determine m 1, i 2 ,..., mk . Using these as estimates of the

moments, we seek to determine a distribution function whose first k moments

are ml, m2 ,..., mk . Unfortuna Jly, it may happen that the "sample moments"

Sm 1 , m2 ,..., mk are inconsistent. That is, since these are estimates of the

moments of (25) and subject to sampling fluctuations, it is possible that

there is no distribution function on [0, N' with mil, m2 ... , k as its first k

moments. Consequently, we compare mil, m22 ,... m II, P •k with the con-

sistency conditions, which may be found in B. Harris [4]; the simplest ofI2
t.hese conditions is mi2 > ml . If ml < f < k, is the last monment estimate

which satisfies these conditions, we employ ml, m2, m in determining

F1 (x), the estimator of F(x) used in determining H

From (31) and from Appendix 3, we can easily see that it is the "small

probabilities" that contribute to E n, r = 2,.. k and thus an estimator

r

#1605 -15-



of F(x) =onstructed in this manner will use mainly the information contained

ir the "small pj s" For the "large p Js", the estimation of p1 by p1 is

satisfactory. To estimate the part of the data that should be assigned to

"large pj.'s", the following procedure is followed. Once F (x) is determined,

we compute

A fN
(33) •r(r,) = 0 dFrf (x), r= R+1, 14-Z,

from which, we obtain, using (31),

A A

(34) 0 r+l =r(FI) n1 /(rl) !. r 1+1, f1+Z .

From these estimates, we define

A A
nW 'nr+l n r4-1rif n r+Is- n r+! >0

(35) w r 1 =(

0 otherwi sc.

w r provides an estimate of the contribution to the occupancy numbers

accounted for by the "large cells", that is, not included in F (x) . A

further modification is necessitated in th-• case of Gauss quadrature formula,

which will be discussed subsequently.

Thus combining the heuristic arguments given above, we obtain

n N wwI x N k+l . k+l
(36) H - f e log()dF (x) - - og(

N x N - -N0 k>1

which is easily seen to have the form (28).
-j -16- #1605•



To amplify and illustrate the above principles, we proceed by using

the Gaussian quadrature formulas, which are the simplest to employ.

Then we have for F (x), I 1, 2, 3, the foll.owing:

• , 0 x <M1
(37) F() M

Nml-in12
0 X< N'm C '

~N-rn

(N- )2  NmI
(38) F = ( < x < N

z 2N-rn- -(N-ot)z + (mn-m 1 ) N

-1 1 x>N;

"2

2n m Z+r - m
0 x < m1 z + 2mx "ml

z

z2 ml Z+mz Inm
(39) 3(x) = 1 - < x< ml-z

3- z2m -2m z --

1 m-z <x

where

-M3 -M 2 +4(m-m 6
3 32 1

(40) 2
2 (m2 -ml )

and

2 3(41) M = 3m - (3m -m M

#1605 -17-



The Gau3s quadrature formulas listed here have the attribute that for

I an even integer, positive probability is placed at N . Thus as N - cc,

this provides an asymptotic lower bound for F, (see E. B. Cobb and B. He rris

A

[2]). Simultaneously, the use of (34) prcvides overestimates for nr+1 . In

A
odd values of 1, the use of FI minimizes the higher moments, suggesting

that this will account for the information contained in the "small pi's" in a

reasonable way. Accordingly, in the examples that follow, we have used the

minimum values of the moments in (34), feeling that this will be appropriate.

Thus (34) and F I(x) for odd value of 1! are to be regarded as prov~ding the

estimates we seek. We reportthe results for even values of I as well in

the numerical examples that follow for purposes of comparison. The apparent

negative bias is co be noted in each example.

We now turn to some numerical examples to clarify the preceding dis-

cussion and to provide numerical comparisons for purposes of Justifying the

proposed technique and the heuristic arguments which suggest it.

4. Numerical examples. The examples which follow are intended to provide

comparisons between H and HT We present these in substantial detail

with extensive discussion so that the ideas and computational procedures

are clear. Some are artificial in the sense that expected values are employed

instead of "random data". This has the following purpose - if the techniques

described here perform poorly when the data is "perfect", then it should do

even worse when random fluctuations are imWosed.

-18- #1605



1
Examplel. p- -, Jl -,2,3,4, z 1 2730, .. Z7, z Z, z 22

A

N= 100, H = log 4 = 1.38629, H = 1. 37556.

From (14), we have that E 1.37117, and from (H25), o'•= .00015

and E(H - H) = .000375. Note that if s is assumed known, we can improve

H by correcting for the bias, obtaining i + ZN . 39056.

I Example2. p 103, j = 1, 2,. .. , 10 , N= 100 . In such a popu-

Slation, H should not perform too well, since the cell probabilities are all

very small compared to N . Here H = 6. 90776. Thus type of populotion is

very favorable to the quadrature method, since F(x) is a degenerate distri-

bution with probability one at Np1 = . 1 and is therefore completely determined

2 3
by ýtI (that is, L2 =Rl, F 3 =I Ji...)l . Thedatais nl = 85, n 2 = 6,

n = 1 . Thus, mI = .14118, m2 = .07059. Further note that H= 4. 48903,
3

also we always have H < log 100 = 4.60517.

For k =, we have w .71765. Thus H =6.49982. For k=2,
3 1

we have H2 = 6.42456. We are not able to proceed to k = 3, since n4 = 0

insures that the consistency conditions for mi, mn, m3 to be a valid moment
•V 3

sequencý orn [0, NJ are not satisfied.

The estimates H and H are lower than H. However, this is

precisely as it should be, since En 1  90, En 2. 4.5, En- .15 andI:3
thus, as a consequence of sampling fluctuations, the data looks as if it

came from a distribution which does not have equal probabilities for all cells.

Example 3. , =1,2,..., 10 N= 1000, nI =373, n 199

n 3 =62, n4 =8, n 5 =1, n6 1, H -6.90776.

#1605 -19-



For this data iH = 6. 36438, m1 - 1.06702, mn2  .99732, m3 = .51475

m4 = .32172, m 5 = 1. 93029.

To compute 9,, we first set k 1, obtaining w3- 0 w4 = 0, w 5 =0,

w6 = . 8345. Thus, we get

H = 7. 42779

2
Sincq mi2 < min, the process terminates here. Here, the overestimate

is precisely what one would expect from the data, since EnI ~ 368 . The

observed v'alue of nI suggests a larger number of c.?lls than are actually

at hand.

Example 4. This example is identical with Example 3 except that

n =341, n. = 1 4 ' =5 2, n6 . n 1 Then

H= 6. 29417, m1 = 1.04985, m2 = 1. 23167, m3 = 1.19648, i 4 = .70381,

mi5  2.11144, m 6 = 14. 78006.

For k = 1, we have w 3 - 7.35875, w4  . 55807, w 5 = 0, w6 = .39596,

w7= .90941 and hence H =6. 86725.1p

For k = 2, wi =0, OP 4, 5, w6 =.05808, w7 =.84214, H2 = 6.71320.

We are unable to proceed to H 3, since the sequence m, m2 , nm3 is not

a realizable moment sequence.

We now choose an example fcr which F(x) is again a one-point

distribution, but since N p1 = 2, the nJs will be non-zero for larger value

of j.

Example 5. pi = 2/1000, i = 1, 2, .... ,500, N-= 1000, n1 = 139, n2 = 146,

n= 78, n =42, n =21, n 5 n =Z, n 1, n -1 Then m =2.10072,
3 '4 5 617 010
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2

m =3.36691, m= 7. 25180, m4 =18.12950. Here m2 <im1 , so that we
2 m3  4 18.

compute H I H = 6.21461 and H= 5. 9257. We obtain H = 7.06270
-3

Example 6. Let p1 = P2 = P3 = p4 = 1/8, Pi= 1/2 10 , 1= 5,69...,1004,

N=200. The data obtained is n1 = 86, n2 =4, n5 =1, n2 3 = 1, n24 = 2, n3 0 =1.

A

For this population H = 4. 84017. From the data, we have H= 3. 59686 and

H1 = 4.75552.

The following examples are artificial in the sense that instead of

random data, the expected values of the nr are employed for "small" values

of r.

Example 7. We are given 2000 cells, 1000 of which have p = 1/4000

and the balance of which have p1 = 3/4000. Two thousand observations are

A

taken. We will examine the behavior of H and Hk as if the n' s were

exactly equal to Eni . Such examples serve to illustrate the motivation for

the quadrature method. In this example EnI 548.9751, En. = 157. 1906,

En 3 = 35.2414, En 4 = 6.3543, En 5  .9404, En 6 = .1171, En 7 -.0125,

A

En8 = . 0011 H = 7.47009, and H = 6. 52939. Thus, even with the use

Eni in r, H has a sizeable negative bias. On the other hand, 14 7.41776,

H2 =7.28016, and H H. This last occurs since

r 0 x<.25

F(x)= .35466 .25 <x<.75

I x_>.75
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That is, F(x) is a two-point distribution and it can easily be seen

that every two-point distribution is uniquely characterized by three moments.

Thus, if n =En, it follows that F3(A) = F(x) and H= H.

Example 8. This example is extremely artifical, but serves neverthe-

less to illustrate one of the possible boundary situations which clarify the

A
differences between H and H . Assume that we are sampling from a

probability distribution that is absolutely continuous with respect to Lebesgue

measure on the real line. Every real number is considered to be a separate

class. Then n1 = N with probability one. Here, one should define H = oo
A

H= IogN and H =•.

Example 9. The Zipf Distribution. A common mathematical model

for describing linguistic as well as other data is the Zipf distrioution given

by

(42) P j •(s))-lS s>l, 2=1,2,...

where r(s) denotes the Riemann zeta function. This distribution is suited

for a test of the quadrature estimates proposed in this paper, since for "small

values" of ,, there are both classes with large probabilitieu and a sub-

stantial concentration of the total probability in small cells. For a specific

numerical illustrwion, we will take s = 3/2 .

We evaluate H and E(nj) forthe Zipf distributions by means of the

Euler-MacLaurin formula, which is larticularly suited for this case.

First w- have
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00

H=-• p log p
J=l

(is (J (s)) '(s logj + log t,(s))

00

(43) = log ýl(s) + s!(;(s)) log j/is
J=l

We employ the Euler-Maclaurin formula to evaluate • log J/J . To ac-
J=l

complish this we write

M-1
Slogi/is= 5logJ/Js+ log J!Js

j=l j=l J=M

Then

(44) logj/js = • logJ/j 5s + M logM +
J=l J=l ks- (sl)l

logM - B2v d2Vl loogM.

SV=1 dM - M

where B are the Bernoulli numbers.

We can similarly estimate E(n), r = 2That is,

00Elnr)~•.• (Npj)re-p

r J=l

0- r! "

S" J=l
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Here the Euler.Maclaurin formula is also applicable and we obtain,

using only the initial term of the expansion

1/s -1
(45) E(n) N r(r-s

r ((s))I/s r! s

We now apply this to a specific numerical illustration setting s = 3/2

N = 1000.

Thus, we have, for i =.1....,10

E(nl) 94.15584

E(n2 ) 15. 69264

E(n3 ) 6.97451

E(n4) 4. 06846

E(n 5) 2. 71231

E(n6 ) 1.95889

E(n7 p 1.49249

E(n8 1.18155

E(n9 ) - .9627 5

E(n l•~ .80229

To determine H, we note that using (44) with M 4 and m = 3 we

get
lGo /1 3/ -- 3 logJ/j 3/2 + -1/2 log44)I

logj/ + 4 /2
J=l J=l(1/4)1

+ lg4 ,.1 B 2- i-l oM
1.43/2 - (2V)! d -I IC (R2 (M)"

=l MM=4
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= .45649 -- 3. 38629 + . 08664 + . 00281 + R2 (M)

where IR (M) I < 2.5 X 10.6. Thus it follows that we can write
0o

H = log t,(3/?) + (3/2 1(3/2))(i log J3/2)

~ 3.21811.

We make the assumption that for each J, j = 1,?,...,n, = E(n,)

This enables us to compare H and Hk when the data arc perfect, that is,
tk

the data is completely devoid of sampling errors. Given this artificial

assumption, we have H = 2. 82871, H1 = 3.00146, H2 = 2. 8404 8, H 3.03918.
1 ' 2 '3

Specifically H , Hl, H2 , and H3 were computed here as follows in

order to obtain a reasonable comparisoi of their behavior. For pI$ P2 , ." P5

the assumption that p = p1 was made. This was employed, since when p

is large, both 'echniques gives virtually the same result. The remaining p's

were distributed according to their contributions to E(n ), as in the pre-
r

ceding examples. For detailed information about the Zipf distribution and

extensive references to articles about the distribution and its applications,

see N. L- Johnson and S. Kotz [5, pp. 240-247].

5. Concluding Remarks. The estimator l1' described in the preceding sections

is to be regarded as a first attempt to produce .m estimator which can circumvent

the deficiencies of the natural estimator H . The procedure is by no means

completely analyzed and it is hoped that this work will stimulate further in-

vestigations into its behavior.
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The following remarks are therefore relevant. We have chosen the Gauss

quadrature formulas, because they are among the simplest. If we fail to

analyze completely the problem for Gauss quadracure formulas, then we are

unlikely to be successful in more complicated situations. The selection of

k produces problems, since for greater values of k, we utilize more information

from the sample; however, the higher moments are less reliable statistically.
2

Thus, a way of balancing these two properties is needed. Second, if mi < mi ,

we have set mi =m• . However, we could also have increased m1 to '-in

2 1'

or chosen any alternative in between. Here again, further investigation is

needed. The same remarks apply to the determination of wk (35) . The pro-

cedure that we have used provides a sequence of quadrature formulas which

give better estimates as we increase k, when the data are perfect, that is,

En =n, 1= 1, 2,.... This is an ad hoc procedure and has not taken ade-

quate account of sampling fluctuations.

The-e are two sources of errors in the quadrature methods. Quadrature

formulas of the Gauss type integrate polynomials exd,;tly, but ex log N- is
x

not a polynomial. Secondly, we are aggregating the "small p 's" and treating

them as if they possessed relatively few values, whereas they are in general

distributed over a tegion. This is a form of smoothing, whose properties

are not completely understood at this time.

Further work in this direction is being continued by myself and my students

and we hope to be able to report further results in this direction in the near

future.
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Appendix 1

Some formu-as and relationships for multinomial distributions

In the evaluation of (10) and (22), the central moments of the

multinomial distribution have been used. As a convenience to the

reader, they have been tabulated here, along with some identities

and inequalities which have been used to obtain order estimates.

We denote E{Z- Np 1) (Z2 - Np 2) ... (Z - Np)

by R for every l<Ji < 00 l<s<go

(A.l.l) = 0

(A. 1. 2) 2= N(pl - p)

(A.3.3N 3 2 2N( 2 3

(A.1.4) =4 3N (P- Zp" + p ) + N(p 1 - 2P1 + 12p - 6p 4

(A.1.5) " 5 -ON (p -4p 1 + 5p1 - 2p1 ) + N(pl 5P12 +50p 1 160P1 + 24p51 )

= N (15p1 - 45p4 + 45p1 -_15P) +

(A.1.6) + N (25p 2 180p + 41Sp4 - 390p5 + 130pl)

+ N(p#1 31p6+ 180p05 390P1+ 360p 5 120p 6
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(A. 1.7) R±11 = "NplP2

12

(A.1. 8) =N(2p p2 -p p)

(A. 1.9) ý111 = 2Nplp 2P 3

2 3 2 +N-p3 +p2
(A.1.10) I = 3N (p p 2 - pIp 2 ) + N(-6plp 2 - p1P2 + 6p~p 2)

2 2 2 2 2
122 = N (3 PIP2 - P2- + p2P 2

(A.l.ll)
+ N(-6p2 2 2p p2 + 2

N l2 1 2P1P2  1 PlP 2)

(A.l.12) N 2 O 2 (PP2P " P ) + 2PlP+P2

(3l 1 2 3  pi2 1 2 6NPlp 2 p3 +P4 pZp 3 )

(A. 1. 13) Thes e=3N 2 p3P4 .6NpIp2p3p4

These formulas may be obtained by completely elementary

methods. Further, a number of these are given in G. P. Ba'sarin [ 1] ,

although ý3 is incorrectly stated there. Similarly, all of the above

with ZJi <-4 may be found nF. N. David and D. E. Barton [3,

p. 146], although R 22 is incorrectly given there.

From (A. 1.1 )- (A. 1.6), we note that

(A.l.14) 0= O(Nr)' , r-1 O( N r ') r =1 2, 3.
22 Z-

From the well-known recursion P0  1,
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(A.1.15) 1  (r+ (P 2 )(Nr-+d; + r r1, 2,

it follows that

(A.1.16) 02r = OlNr)' 2rIO(Nr-l), r = 1, 2,

We get order estimates for the product moments, that is,

those indexed by more than one subscript by use of repeated

applications of the Cauchiy-Schwarz inequality. Specifically, let

_q _ 1 be an integer. Then for arbitrary random variables WI, W2,

... , W such that the moments given below all exist, we obtain
2q

2 2q 2 q
(A. 1.17) (E(WI W2... Wq _q iTEw

When q = 1, this is the customary form of the Cauchy-Schwarz

inequality. To apply (A, 1.17) to the situation at hand, we define

Wti= (Zi Npt1 and if in ii.. <s< 2q, q >1, then

then we define W = 1, i = s+l, s+42, .q We write (A.1.17)

in the form 1

V ~~ Zq-1=
(A. ~ q- q.1)Ew

Thus, for 2q'l<s<_2q, q_>l

(A.I.19) IE{(ZI-Np) (Z 2 _Np 2 ) 2...(ZsNPs < E NP
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From(A.l.14), E(Zi-NPq) -O(N )1, 1i-, 2, ... , s and hence

s 2 q j ONq-1 s
IT E(ZNP) = q- )1N =l)

Thus
s

i jl
(A.1. 20) iLjlj z, s = O (N ) ;

the integer part is a consequence of the fact that N can only appear

in integer powers.
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Appendix 2

The Behavior of the Asymptotic Variance and Mean Squared Error of 11. In

this appendix we show that
S

1:.2.l) max G(Pi P' "' Ps) = max (Z pj log p1 -H2 )
PIl P22 PS P1' P21 " 'P s J=l

I * * *"2
= 4p (l-p)/(l-Zp) 2

where p is the largest solutior. in p of

, ( )l-2p

This can be used to specify the sample size N necessary to obtain estimates

of H of a given precision when using 19 and therefore is of importance when

s is bounded; or mcre precisely, when s/N* is sufficiently small. The

minimum of G(pl, p'"...) = 0 and is trivially attained when

p 0 i I , I C {l, 2,...,s}

, iE Ic , C

This is easily verified as fo)'.ows, since then

s pilog 2 pi =j pilog2 p,

= I1cl I 1 "c- log,- IC .
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Further, in this case
S

i H V_ p z' g = ic -c lgI
= -, p, kgpj 1 =iI ,IC-l logJICl

;11

thus verifying the assertion.

To determine the maximum, we first note that
,

(A.2.2) G (s) = max G(pl, ... , ps)> max GlPI' Ps-I' 0)
i ~PIl" ' Ps PI, Ps-I

= max G(p1 ... , Ps 1 ) G (s-i)

pl, ..." Ps-1

S-1
Now let Ps = 1- p and note that for j 1=, 2, s-IS~j=l

8GlpI, ... , PS)
(A. 2. 3) ap = (log p1 -log ps)(log p -- C p Ps + 2 ZH)

Setting

aG(p1,. , Ps)
(A.2.4) G p1, 01, j 1 ,2,..., s-I P

we note that in each equation we must have either log p. - log Ps = 0 or

log p1 + log ps +2+ ZH = 0 . Clearly if log pj = logp for j = 1, 2,...,s-1,

we have pj = l/s, j = 1,2,...,s and G(plp",. .. 'Ps) = 0, a minimum.

Hence there must be at least one J with log p. + log ps + 2 + ZH = 0 . Since

for any solution of (A. 2. 4), any permutation of the indices 1,2,..., s is

also a solution, with no loss of generality, we can set
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log p +logps 2+ Z+HO, J = l,2...,t; 1<t <_s-1

then we have

-2-2H
A..5 p 5 P = e , j =l,2,...,t,

(A.2. s)
= p p j = t+l, t+Z, ... , s-I,

the set of Indicos J for which p. = p possibly being empty. From (A. 2. 5),

we have

(A.Z. 6) t P f, = (I (s-tP te -2'H

For fixed t, let H be any 11 in the solution sct of (A. 2. 6). Then,

pS = p S(H) has at most two solutions, say p s(H ) and ps 2 (H ). Thus,

from (A. 2. 5), we have, for every? H anrl every p ), i = 1, 2,

p k(H )p (a I < J,k< t

(A. 2. 7) pF ( *tp ( p(J i, I < k< t
ksi - -

Thus every solution to (A. 2. 5) has the form

l-(s-t)p
I I J t - , • ,...,t ;

(A. Z. 8)

pJ =p J=t+l, ... , s-I

This yields
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I

N -(s-t) p log p (1 (s-t)p logl s t)PS

Substituting this into (A. 2. 6), we obtain

l(s- -(s-t)p

(A. 2.9) e t0 < Ps <
-stp ) P <p(st

Now the logarithm of the right hand side• of (A. 2.9) is n convex function of

PS which assumes the value +oo at ps5 = 0 and ps = (s t) and the values

0 at p s = 1/s and l/2(s-t) . Thus there are exactly two solutions of (A. 2.9),

I
P and Ps 2 with 0 < Ps 1 < 1/s <- <P 2 < 1/(s-t) . As a consequence

of the preceding discussion, we have that

* i-(s-t)Psi l-(s-t)Pst
(.L2.10) G (s) = max max G( tp '" tp Ps...'P

l<t<s-l i=1, 2

= max max Gi(t, psi)
l<t<s-i i=1,2

Further, note that if (t, psi) is a solution of (A. 2. 5), then (s-t, (t

is also a solution and

G1(t, psi) = G (s-t I t )

Thus, we can reduce (A. 2. 10) to

G (s) = max max GI(t, p)si
s/2_<t_<s-I i=l, z

Hence one can determine the maximum by evaluating Gi(t, Psi for s-1
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choices of (t, psi) . However, an exact computation is possible. Hence

we proceed further.

Note that by using (A. 2.1), we have, for I = 1, Z

G(t, P i ( - -Sit)P si 1 '(St)P) + (st)p 1O log 2 P1

(1(-t)p Si l-(St si SO o 2
-+ -,t I.- op•lo

(l-(s-t)p )(s-t) P (log(l-(s-tlPs) - log(tp, ))2

Then, since psi is a solution of equation (A. 2. 9), we have

log(l-(s-t)ps) - log(tpi) = 2/(1-Z(s-t)p si)

hence

4(s-t) p si(l-(s-t)psi)
(A. 2.11) G(t, Pi) =(st)Psi) 2

Consequently, we define

(A. 2. 1Z) G2 (p) = 2pp 0 <p<l

(1-2p)2 '

where p, = (s-t)p si. Thus G2(Pt) = Gl(t, P si i = 1, 2 . Clearly G2 (p)

is symmetric about p= 1/2 . Further, G (p) is increasing for 0 < p < 1/2
1

and decreasing for 1/2 < p < 1. Consequently

max Gl(t, P)=Gl(t, p) = G 2 (P)
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where p 2 if P2 " 1/2 <1/2- P1 and p1 otherwise and Ps p /(s-t)

We now show that p P2 p

We transform (A. 2. 9) similarly, obtaining

(A. 2. 13) ~(s-t)ll-p) I11-2p = e 2 <P<1
tp

If t = s/2, then the left hand side of (A. 2. 13) is symmetric about p= 5

and consequently p2 - 1/2 = 1/2 - P1 in that case. Further, since t > s/z ,

for p<//2,

1-p l-2p (s-t)(l-p))l-Zp
t (A. 2. 14) I-7--> t

P

and for p > 1/2

(-p )-2p ( l-p))l-Zp
(A. 2. 15) - < tP

Thus in general, P2 - 1/z<l/ -P1 and p =p " Hence Ps =P

Consequently, in (A. 2. 12) and (A. 2. 13), we can restrict attention to the region

p > 1/2 . Thus, we have shown that

G (s)= max G(t, psz)
s/2 <t<s-l

Further, note that (A. 2. 13) depends on t and s only through (s-t)/t

Now let s and p_> 1/2 be fixed and consider tl, t2 with s/Z <tI <t 2 < s-I.

Then

s-tI s-t 2

t t
1 2
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and hence

, (S-tl1)(1-p) I'ZP< ((s-t,)(I-p) )I'2p

{ tI P -- t2 P

Thus the root ps (t2 of (A. 2.9) is smaller than the root ps2(tl) of (AL 2. 9)

and we conclude

*• (1-Ps 2  
1 -Ps2 *•(A.2.16) G (s) : -C •s2l "'" s-I Ps

4p 2 (I p)

(1- P s )
s2

whare ps2 Ps (s-l)

The above argument can also be employed to demonstrate the mono-

tonicity of G (s) as a function of s, however this follows immediately from

(A. 2. 2).
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Appendix 3

In this appendix we justify some of the app:oximations

used in the quadrature method. In the subsequent discussion 7

and X will be given real numbers with 0 <T <1/2< X <1 and

7 + K < 1. We now establish the following computational lemmas.

Lemma A. 3. 1. Let N -- o0. Then for any integer r > 0. and any

c>O, and r< cNT ,

N Nr 2T 1
(A. 3.) ( ) (1+O(N

r

The proof of this lemma is trivial and therefore omitted.

LemmaA.3.Z. For r< cN7 and p<cN , as N-,o0

(A. 3. Z) (1-p) N-r = e -Np (I+OINI'-Z)).

The proof of this lemma is trivial and therefore omitted.

LemmaA. 3.3. For r< cNT and p>cNx , for every £ >0

there is an N sufficiently large so that for N > N

(A. 3.3) (Nr r(1-p) N-r -N
r

and

(A. 3. 4) e e"Np < e- -1 -
r!

The proof of this lemma is trivial and therefore omitted.
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Lemma A. 3.4. If nr is the number of cla. ses occurring r

times then

E(nr) Z (N) r(1 p N-r
J=l r J

Proof. Let Z = 1 if the Jth class occurs r times in the N
0g

observations and Z = 0 otherwise. '-hen n=Z Z1 and
0 0 j 0W r J=

En = E Z "" EZý P {Zj = I} -l (r) P( •
r J•-I J--I J = J-I

Combining all of the above, we heve the following theorem.

Theorem A. 3.1. Let T and X be given rel numbers with

0 < < <X < 1 and r + X<l. Then given a random sample

( 1, X2 , ... , X.•) of N observations from the population with

P(XiCM)= pj, J 1=, ... , and if nr is the number of cells

such that exactly r X s S Mi. then

00

E(nr (N) r,. ,N-r

r ~r PiJ:7

and for r_< Nb and for every c >0 there is an N such that for N> N

I,(nr)

rNn X. ri e O(N ))+O(e

Proof. There are at most N cells with " > N; hence from

Lemma A. 3.3 and A. 3.4,

N r N-r -N X 'e ' -N).1(r)Pj(l-pj) <Ne<

rpi ( ) <N

j: p
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The first term is direct from Lemmas A. 3. 1 and A. 3. 2.

We now obtain:

TheorenA. 3. 2. For T and X such that 0<T < < X <l and
T, + X < 1, w e have -N P i

eTK V (Np) O Ne N-X-IE

posit rs,)) 1 , 2 r.., andp p<_N-

Proof. We utilize the easily established fact that if ai, b are
a0 a

positive numbers, 1 11I 2, .. ,and _• >-• 1=,2,... then

0 1

Then for p < N-x, r- N7 we have

N( )p N(-p r )-.( rp

r : 'l e <e NT IO(N' -A

(Np - Np N
er!

Thus

p.r e- Nl+0(- )r

e
p-RN

The conclusion fo)lows from Theorem A. 3. 1.
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Appendix 4

In this appendix we provide two examples of populations for

which H = oo.

Example I. Since Z 1 =c<a. Let
J=1 (J+l)log (0+1)

pj = 1/c(j+l)log (J+1), j = 1, 2, .... Then log Pj = -log c

-log(j+l) - 2 log log (j+1). Then

- pj ogpj= y' log c + log(j+l) + 2 loc log(J+l) - 1c o li - c(J+l) log(j+l)
c(j+l)log (J+1)

Example 2. Let mk be the smallest non-negative integer such that
2k Okm

m-k, k>l. Let M0 = MkC = 21. Define

J=I

P1 = 2 k-mk for Mk-l < i < Mk, i an integer. Thus 0 < pi < I1

i>l,

00 00 M k mk
k 00

1 = Z E Ik
i--I k- i=Mk+1 = 2I- I.

1=1~~~ k=l 2=k~ kmk k Zkmk k=l2

Using logarithms base 2, we have
M mk

0 p log 2 (k+mk)

"Pilog2Pi= z -Pi i = Z k+mi=l k=l i=Mkl +1 k=l kk-l2

oo k+mk+(2k k) o0
k #k0 z

k=1 2 k=1 =
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